If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15-29=0
We add all the numbers together, and all the variables
x^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 153+b=108 | | H(x)=5x-125 | | y-13=-23 | | 51/5r=10 | | -120=8(1-2x) | | b-58/8=4 | | x^2=81/100. | | H(a)=3(-8)-1 | | x+x/19=200 | | x+x/19=200 | | x÷5+19=24 | | 6(v-82)=60 | | 6=-3/2w | | x6+7x3+3=0 | | x6+7x3+3=0 | | x6+7x3+3=0 | | 4(y-2)+1=y-6+3y | | 4(y-2)+1=y-6+3y | | 4(y-2)+1=y-6+3y | | 4(7+5k)=188 | | 6=p-42/6 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 | | 23=x+22 |